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In this paper, a new gain-scheduling control design

approach is proposed by combining LPV control the-

ory with interpolation techniques. The improvement

of gain-scheduled controllers can be achieved from lo-

cal synthesis of Lyapunov functions and continuous

construction of a global Lyapunov function by interpo-

lation. It has been shown that this combined LPV con-

trol design scheme is capable of improving closed-loop

performance derived from local performance improve-

ment. The gain of the LPV controller will also change

continuously across parameter space. The advantages

of the newly proposed LPV control is demonstrated

through a detailed AMB controller design example.

Introduction

The gain-scheduling approach is perhaps one of the

most popular nonlinear control design techniques that

has been widely used in fields ranging from aerospace

to process control. Although it seems to work well in

practice, this heuristic design procedure does not take

the parameter variations into account, x'2 In its early

practice, the control design came with virtually no

guarantee on performance, robustness, or even nom-

inal stability. Recently, a systematic gain-scheduling

design technique was developed in the form of linear

parameter-varying (LPV) control theory. 3 8 This class

of systems is different from the standard linear time-

varying counterpart due to the causal dependence of

its controller gains on the variations of the plant dy-

namics. The implications of parameter-dependent sys-

tems theory for gain scheduling is obvious because gain

scheduling conceptually involves a linear, parameter-

dependent plant. The LPV design technique provides
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guaranteed stability and performance properties, and

simplifies the interpolation and realization problems

associated with conventional gain-scheduling meth-

ods. However, one potential problem associated with

parameter-dependent Lyapunov function approach is

the lack of guidance for choosing "right" basis func-

tions to parameterize infinite dimensional functional

space.

Interpolation is an important step toward synthesis

of gain-scheduled controllers and has not been ade-

quately addressed in a systematic way. Some ad-hoc

interpolation techniques have been proposed in the

past: (1) linear interpolation of poles, zeros, and gains

of local controllers; (2) linear interpolation of solu-

tions of Riccati equations; and (3) linear interpolation

of state-space matrices of balanced controller real-

izations. These approaches are intuitively appealing

but could generate destabilizing controllers. Stilwell

and Rugh 9 proposed a gain-scheduled control design

based on interpolation techniques. The interpolated

parameter-varying controller preserves point-wise sta-

bility of local LTI controllers for all frozen parameter

values. However, the global control does not provide a

priori stability and performance guarantee fl'om locally

designed controllers for fast time-varying parameters.

In this research, we propose an interpolating LPV

control approach by combining LPV control theory

with interpolation techniques. The interpolated LPV

control design is capable of improving controlled per-

fornmnce by finding the most appropriate Lyapunov

functions in a local sense. Moreover, the local stabil-

ity property will be extended to the entire parameter

range by a globally constructed Lyapunov function

through interpolation. The proposed interpolating

LPV control technique has great potential to many

industrial applications including active magnetic bear-

ings (AMBs), for which the controller adjusts its gain

based on changing rotor speed and provides accurate

control of flexible mode variation in terms of natural
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fl'equency, damping, and mode shape. In this research,

we use a simple rigid magnetic bearing example to

demonstrate advantages over existing gain-scheduling

approaches.

Improved LPV Analysis Condition

Consider an LPV system

'(t)] [A(p(t)) B(p(t))] [x(t)]
e(t)] = LC(p(t)) D(p(t))] [d(t)J (1)

matrix function Qx(p) >_ O, if there exists a group

of continuously diffcrentiablc positive-definite matrix

functions Xi(p), i = 1, 2 such that for any p E 7)i,

+ ]

-vd DT(p)|
C(R) D(p) -'_iI J

(4)
and for" all p ¢ T )12

where x,a_' ¢ R '_, d ¢ R '_d, e ¢ R _. All

the matrices have compatible dimensions. It is as-

sumed that the vector-valued parameter p evolves

continuously over time and its range is limited to

a compact subset P C R*. Its time derivative is

bounded and satisfies the constraint -ui <_ fli <_

ui,i = 1,2,.-. ,s. For notational purposes, F :=

{v : -ui <_ vi _< ui, i = 1,2,.-. ,s}, where Y is a given

convex polytope in R* that contains the origin. Given

the sets P and V, we define the parameter u-variation

set as

5_;={p•dS(R+,R*): p(t) • P, fl(t) •1;, Vt > O}

(2)
Therefore the dynamics of the LPV system are char-

acterized by the parameter value p and its variation

along time. Previous research on LPV control the-

ory mainly focused on a single Lyapunov function

(quadratic or parameter-dependent) over the entire

parameter set. For the given LPV system, it is clear

that the achievable performance relies on the choice of

the Lyapunov function. However, it would be bene-

ficial if one can analyze the performance of the LPV

system over different parameter ranges using different

Lyapunov functions with a stability guarantee.

To simplify the presentation, let us assume that the

parameter set has dimension one. That is, 7) C R s.

Suppose Ps,P2 is an overlapped partition of the pa-

rameter set P, and define the intersection of 7)s and

T )2 aS

_12 : 77)1 _ T)2 (3)

Then the parameter space 5° is the union of two subsets

_1, p2. Through linear interpolation of the Lyapunov

functions Xi(p),Xs(p) over subsets _ol and 5°2, one

would obtain a continuous Lyapunov function over

the entire parameter space. The continuity property

of the Lyapunov function is important to guarantee

monotonic decrease of its value over any allowable tra-

jectories dictated by the LPV system dynamics. A

new LPV stability and performance analysis condition

based on the partitioned parameter subsets is then pro-

posed.

Theorem 1 For the parameter set P = [p_,p] with

its overlapped partition 7)s = [p,b] and p2 = [a,p]

(a < b), the LPV system (1), and a given symmetric

X2(p) - Xs (p) + (b - a)Qx(p) >_ 0 (5)

X2(p) - Xs(p) - (b- a)Qx(p) <_ 0 (6)

then the LPV system (1) is exponentially stable and

its induced fl--2 norm with x(O) = 0 is bounded by 7 =

rnax{Ts, 79}.

Given the above conditions over each parameter sub-

set, a continuous Lyapunov function in the form of

b-p p-a

(7)
can be constructed and used to verify the desired sta-

bility and performance properties of the system for any

parameter trajectories within 3_. Then a non-smooth

dissipative system theory is applied to address possible

discontinuity of the Lyapunov function derivative at

the boundary of the parameter subsets, l° The perfor-

rnance bound derived in Theorem 1 states the "worst-

case" performance, which is not often achievable. For

example, if the parameter trajectory is constrained in

the subset pi, then the system's performance is over-

bounded by "7i, which could be less than max {%, %}.

Theoretically, this theorem simply states the fact

that the performance level of the LPV system relates

to the existence of a continuous Lyapunov function.

However, in practical situations, it is usually hard

to identify a suitable parameter-dependent Lyapunov

function without resorting to a global search. In this

sense, the improved analysis condition will be help-

ful to find a sharper performance bound through local

studies. Then the global Lyapunov function will be

constructed by interpolation.

Interpolating LPV Control Synthesis

Given a generalized open-loop LPV system

BI(P(t)) Bz(P(t))I [x(t)l
Dll(p(t)) Ds'e(p(t))| |d(t)|
D21(p(t)) D22(p(t))J kn(t)J

1 [A(p(t))
4t) I =
y(t)J L&@(t))

(8)

where all of the state-space data are continuous func-

tions of the scheduling parameter p, it is assumed that

the parameter trajectory resides in the set 5_. For

simplicity, we assume that
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(A1) (A(p), B2(p), 6'2(p)) is parameter-dependently

stabilizable and detectable for all p,

(A2) Dx2(p) and D2x(p) have full column and row

rank respectively for all p,

(A3) Dis(p) = 0 and D22(p) = 0.

We consider the class of interpolating LPV con-

troller in the form of

= LCk(p(t),/_(t)) Dk(p(t),l)(t))] Ly(t) J
L_\_/ j

(9)
Illgeneral, the controllergain is a continuous function

of parameter p and its derivative. The control de-

sign objective is to minimize the energy (E2 norm) of

the output signal e(t) of the closed-loop system in the

presence of bounded energy disturbance d(t). Specif-

ically for the magnetic bearing control problem, we

would like to synthesize a gain-scheduled control with

combined disturbance rejection, gyroscopic compensa-

tion, and automatic balancing capability. This can be

formulated as an optimization problem with minimiza-

tion of displacement of the rotor fi'om its centerfine

at selected points subject to unknown torque distur-

bances.

T xTDefine x d := [x g k ], then the closed-loop system

can be written as

LCc_(p,p) Dc,(p, fl)J

where

°]:ooLG, D_lJ C 1 0 Dll

oB2 o]+ I 0 Ck Dk C2 0 D21
0 D12

(11)

Next, we propose a synthesis condition for an

improved LPV controller using multiple parameter-

dependent Lyapunov functions and an interpolation

scheme. For clarity, only one parameter is considered

and the parameter space P is covered by two over-

lapped subsets 7 7)1 and p2. For each parameter subset,

we seek to design one LPV controller as stated in the

form of eqn. (9). The overall gain-scheduling con-

troller is then constructed by interpolating local LPV

controllers. It is clear that the global controller is ca-

pable of achieving tighter performance due to smaller

parameter range. However, a critical issue associated

with the proposed controller interpolation scheme is

the stability of the global LPV controller. This will

be guaranteed by constructing a globally continuous

Lyapunov function over the entire parameter set.

Theorem 2 For a partition of parameter space 7) =

__, p] as subsets _:)1 = JR, b] and 7 )2 = [a, p] (a < b),

and given QR, Os >_ 0 matrix functions, if one of the

following equivalent conditions are satisfied:

1. there exist continuously differentiable matrix fanc-

tions Ri(p),Si(p), i = 1,2 such that for p E 79i

A_ +AR_ + R_A

C1]_i --7i I 0

B T 0 --7i I

[ { _[_/] ((_, _}_ 0SI )} _i1_1 CoT]

A_T +A _ Si + S_/
BT si --7i I

C1 0 -7ilJ

YR <0

(12)

A;s < o

(13)

[R_p) S_{p)] _> 0 (14)

with_(p) = Ker IBm(p)
Ker [C2(p)D21 (p)O],andforpeT _12

/_2(P) -- /_I(P) -- (b - a)QR > 0 (15)

J_2(P) -- ]_I(P) -- (b - a)0 R < 0 (16)

S2(p) -- Sl(p) + (b -- a)QS > 0 (17")

S2(p) -- Sl(p) -- (b -- a)Os < O. (18)

Dl_(p) 0], a:_ (p)=

2. there exist continuously differentiable matrix func-

tions Ri(p),Si(p) > 0, i = 1,2 and continuous

matrix functions _(i) j_(i) _(i) = = 1, 2 such that
k, k ,_k ,_

for p E 7)i,

+ b_)c_ + (.)

Dr/_(orBT & + 21
Cs

SiB1 -- 1_i)D21

+AR_+ B_0_/+ (,)J
BT

n ,_(i)
ClJ_i + L"12'-_ k

c:
f%(i)T I3T

B1 RicT1 + "_k _12

--7i I 0

0 --7i I

and for p E 5 D12

R_(p) - Rl(p) + (b- a)QR > 0
R_(p) - Rl(p) - (b- a)QR < 0
S2(p) -- Sl(fl) + (b - a)Qs >_ 0

S2(p) -- SI(p) -- (b - a)Qs <_ O,

<0

(19)

(20)

(21)

(22)
(23)
(24)
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then the closed-loop LPV system can be stabilized by
a continuous LPV controller with induced £2 pcrfor-

mancc less than 7 = max{71,72 }-
Furthermore, let

b-p p-a
7(p)= _ 71+ _ 72

72

n(p), s(p) = {

]_1 (P), $1 (P)

b--p
(b--a) {/_l(fl),_l(P)}

+ {a(p), s2(p)}
n2 (p),& (p)

p<a

a<p<b

p_b

p<a

a<p<b

p_b

(26)

and M(p)NT(p) := I - R(p)S(p), calculate

T dMT
Ak(p, fi) = S(P)_t + _ (p)_ AT(p)

1

7(P) [S(p)Bl(p) + Bk(p)D21(p) CT(p)]

V BI (p) ]
×

LC1 (p)i_(p) -F D21 (p)Ck (p)]
(27)

/_k (P) = - [7(P)C T (P) + S(p)B1 (p)DT1 (p)]

x [D2s (p)DT1 (p)] -s (28)

Ok (p) = - [DT12(p)D12 (p)] -1

x [7(p)BT(p) + DT2(p)C] (p)R(p)] (29)

&(p) : o (30)

Then the interpolated LPV controller Kp will be con-
structed as

Ak(p,/5) = N-'(p) {Jk(p, ,5) - S(p)B2(p)Ok(p)

-J_k (P)C2 (p)R(p) - S(p)A(p)R(p)} M-T(p)

(31)

Bk(p)= :v (p) (32)

Ck (p) = C,_(p)M- T (p) (33)

Dk(p) = 0. (34)

It is noted that we ask for different performance

levels over each parameter subregion. The proposed
interpolation scheme could provide a global stabiliz-

ing LPV controller with the potential to improve its
local performance. The global Lyapunov function for
the closed-loop LPV system is derived from the matrix

functions R_(p) and S_(p). Because of the interpola-
tion scheme used, it relaxes continuity requirement of
individual Lyapunov functions over the intersections

of parameter subsets. In particular, only finite vari-

ation of Lyapunov functions over intersected regions

is necessary and the amount of allowable change de-
pends on the maximal parameter variation. When

u + 0 (slowly varying case), the conditions (16)-(18)
will have no effect on the synthesis result. Thus the
synthesis condition over each subset is essentially de-

coupled and can be solved independently.

The solvability conditions in eqns. (16)-(18)
are clearly infinite-dimensional, as is the solution

space. To approximate, we restrict the search of the
parameter-dependent Lyapunov function to a span of

finite numbers of basis functions. That is, let

NI Ng

k tgkre(p) : Z (P) ,, k ks,(p) : Za (p)& (35)
k 1 k 1

where { f_ (p) }N* 1 and k N_{gi (P)}k 1 are user-specified
scalar basis functions. Note that different basis func-

tions may be used over different parameter subsets.

R_,,S) are new optimization variables to be deter-
mined. After such a parameterization, the LPV

synthesis conditions can be solved using a gridding
method over each parameter subset.

Advanced AMB Gain-Scheduling
Control

Active magnetic bearings (AMBs) use an electro-
magnetic force to provide noncontact support for to-

tors in high-speed rotating machinery. AMBs have
several unique characteristics that make them well
suited for aerospace applications: they provide non-

contacting support of the flywheel rotor, virtually
eliminating bearing friction and wear, and they elim-

inate concerns with lubrication, heating, and power
consumption typical of standard bearing systems. Ad-
ditionally, AMBs can effectively eliminate synchronous
vibrations associated with mass imbalance and shaft

run out, making them highly desirable for spacecraft
applications where pointing accuracy is critical. Mag-

netic bearings are well suited as flywheels in replace-
ment of chemical batteries to store energy on a space-
craft, ]1 and they provide integrated attitude control

and momentum management functionality. 12 14 Al-
though this technique has tremendous potential for a
variety of industrial applications, AMBs are open-loop

unstable, thus making the controller design problem a

challenge. Moreover, the flexibility of high-speed ro-
tors adds to the complexity of control design task.

Most controllers in use today for magnetic bear-

ings were designed using PID strategies. However,
it is difficult to satisfy the stringent performance re-
quirernents with PID control. Mohamed and Busch-

Vishmiac la and Matsumura et al. 16 designed gain-
scheduled 7-/o_ controllers for rigid magnetic bear-

ings utilizing the stabilizing controller parameteriza-
tion with the free parameter Q playing the schedul-

ing mechanisms. Unfortunately, this ad-hoc gain-
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scheduling design technique suffers from slow vary-
ing parameter requirements. The resulting gain-

scheduling controller could render the closed-loop sys-
tem unstable when the rotor speed changes rapidly, s6

Rotor flexibility was considered using the #-synthesis
technique, sr It was shown that the # controller exhib-
ited much greater stability robustness to variations in

rotor mass. However, the controller caused significant

performance degradation when the actual rotor speed
differs from the pre-specified design condition. One
way to address this problem is to design a series of con-

trollers for each operating speed and then interpolate
between these controllers. 16 However, this approach

does not provide any stability and performance guar-
antee. In Tsiotras and Mason 18 and Tsiotras and

Knospe, s9 the LPV control theory was applied to ad-

dress variable rotor operating speeds using a rigid rotor
model and conservatism of LPV control design was

recognized. Similar controllers were also developed by
Sivrioglu and Nonami. 2°

Rotor Dynamics Modeling

Owing to the linear dependence of the rotor speed
in the plant dynamics, the nonlinear gyroscopic equa-
tions of AMB can be simplified to a set of linear,

time-varying differential equations. However, the ro-
tor dynamics are inherently unstable; that is, even

small unbalanced masses can create large synchronous
disturbances with the same frequency as the rotor's.

Therefore it is necessary to develop a gain-scheduled
controller capable of rejecting the periodic disturbance

as the rotor speed changes.
The rotational motion of a magnetic bearing can be

derived from its rigid body dynamics, which issa' 18

0 = -- _;' q- _7(frl -- fr2 q- re2 -- fgl q- fdo) (36)

_; = PJ"ojr + f7 (re3 -- fr4 + fg4 -- ft3 + fd_) (37)

where 0,_ are the Euler angles denoting the orienta-
tion of the rotor centerline. J,_, J,. are the moment of
inertia of the rotor in axial and radial directions, re-

spectively. The parameter p denotes the rotor speed.

The magnetic forces generated by four pairs of elec-
tromagnets are denoted by f,.i,fei for i = 1,2,3,4.

f_,o, fdv, are disturbance forces caused by gravity, mod-
eling errors, imbalances, etc.

The electromagnetic force fj is related to the voltage
ej across the jth coil through the magnetic flux _¢j by
the equations

fj =/_j 1+ _h/

2R

(38)

(39)

The following system parameters are chosen for the

active magnetic bearing example (Table 1).

Parameter Value

A area of each pole

h pole width
Go nominal gap

Jr radial moment of inertia

J_ axial moment of inertia

half the length of the shaft
k

N number of coil turns

R coil resistance

_0 nominal airgap

1531.79mm 2
40.OOmm

0.55ram

0.333kg • rn2

O.O136hg • rn2
O.13m

4.6755576 x 108
400

14.6Ohm
2.09 x lO-4Wb

Table 1 Magnetic bearing parameters.

In the absence of disturbances and modeling errors,
the above equation specifies an equilibrium. Lineariz-

ing the nonlinear equations at the equilibrium, we
obtain

= - _ + T(-4c_gO + 2c_0o + fdo) (4o)

;} = P&O + g (-4c_g_ + 2c1_ + Ida) (41)

NOo = co + 2d2gO - dlOo (42)

N_ = e_ + 2d2g_q)- ds0g, (43)

where 00, q_ are the differential magnetic flux fi'om
electromagnetic pairs, and e0, ce are the correspond-
ing differences of electric voltage. The constants

cs,c2,dl,d2 depend on _o, Go, R, A, N, uo and the ge-
ometry of the bearings as follows

2Co)Cl = 2k_o 1 + _-j , c2 - rch '
(44)

2RGo 2R¢Po Jr
dl - uoAN' d2- uoAN' m= 7-. (45)

The imbalance forces fao and fd_ are typically mod-
eled as sinusoidal disturbances, and are given by

(Jr - J_,) p2Tcos(pt) '
fdo -- g (46)

(Jr - J¢,)p2Tsin(pt)"
fdW - g (4r)

In automatic balancing design, the imbalance forces
will be treated as a sinusoidal sensor noise n r =

[eT sin(v* + a) eT CosIpt + a)] on the measured rotor
displacement, which can be written in a state-space
form of

where _ = -0.001.

and ur = [e0 ee]. Combining rotor dynamics and the
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disturbance equation, the linearized equation can be

written as

with

0

0

_ 4(-'2

7n

0
A=

2d2
N

0

0

0

:b = A(p)x + Blw ÷ B2u

Z = Clx ÷ Dllw ÷ D12u

y = C2x ÷ D2sw ÷ D22u

0 1 0 0

0 0 1 0

0 0 _v& 2c_
J_ m

4c2 _ 0 0
?I_ Je

0 0 0 dl
N

2d_ 0 0 0
N
0 0 0 0

0 0 0 0

Fo4x2]
F°_×11 11i IB1 _ / 1 / , B2LoJ x

C1= [&02×8%×_lj'Dl1=04×1,

(50)

(51)

(52)

0 0 0

0 0 0

0 0 0

2c_ 0 0

0 0 0

dl 0 0
N

0 _ -p

0 p rr

(53)

(54)

D12= [02x2]
L_2J'

(55)

6'2= [/2 02×4 /2], D21 =02×1, D22=02x2

(56)

Note that the linearized rotor dynamic equation is in

the form of a linear paralneter-varying system with

the rotor speed serving as the parameter. Fox" gain-

scheduled control, the rotational speed is assumed to
be available in real-time fox" controller use.

Interpolating LPV Control Design

The design objectives of the LPV controller are

to asymptotically stabilize the system over the whole

range of rotor speeds and to minimize an error signal

representing a weighted sum of the forces at the bear-

ings, the gap displacement at the bearing locations,

and the control input used.

Although the scheduling variable is time-varying in

the LPV dynamics, it is simply treated as a fixed pa-

rameter in the design stage. The design objective is

quantified fl'om a frozen parameter design viewpoint

by weighting functions, and the weighted open-loop

interconnection is given in Figure 1.

In Figure 1 the weighting functions are chosen as

200@ ÷ 100)/2,
_(_)- _7O.Ol (57)

O.O01s

w_(s) - 0.055 + 1&' (58)

W,,(s) = 0.001 (59)

The rotor speed is assumed to change freely be-

tween 315rad/s to llOOrad/s. The rotor dynam-

ics exhibit significant gyroscopic effects in this speed

d

G
I

Fig. 1 Weighted open-loop interconnection for the

magnetic bearing system.

range. The LPV synthesis problem can be solved us-

ing either a single or parameter-dependent quadratic

Lyapunov function over all gridding points in a one-

dimensional parameter space)' s The performance ob-

tained through a single quadratic Lyapunov function

(SQLF) approach is 7 = 320.78, which is quite con-

servative. Also, multiple LPV control syntheses are

conducted with the whole parameter space divided

into two subsets ([315,720] U [700, 1100]) and four sub-

sets ([315,520] U [500,720] U [700,920] U [900, 1100]),

respectively. Then five points are used to grid each

parameter subspace uniformly. The free parameters

QR and Qs are chosen as 0.111.) for p E pi N PJ or

zero otherwise. In each partitioned parameter space

case, two sets of identical basis functions are used to

parameterize the functional space,

f/1 (p) = 1, (60)

g_,(p) = 1, g_(p) = p (61)

for each i. Note that the basis function for Ri(p)

is chosen as a constant over each parameter subset.

This will only cause small performance degradation

compared with more complicated basis function se-

lections. Since both R and S become functions of

scheduling parameters after interpolation, the inter-

polated LPV controller gain will depend on both the

parameter and its derivative. The performance level

of the interpolating LPV controller versus number of

parameter subsets under different parameter variation

rates is shown in Table 2. Note that the "7 value

represents the "worst-ease" interpolating LPV control

performance over different parameter subsets. The ac-

tual performance over each parameter subset could be

less than the "worst-ease" performance.

For comparison, a single parameter-dependent Lya-

punov function is also considered to demonstrate the

sharpness of the newly proposed LPV synthesis condi-

tion. The calculated performance bound is about the

same as the "worst-ease" performance of interpolated

LPV cases.
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Variation rate PDLF Interpolating LPV
2 subsets 4 subsets

1 9.863 9.936 9.954

100 10.064 10.107 10.149
10000 141.24 144.43 143.50

Table 2 Achievable induced-£2 performance us-
ing single and multiple parameter-dependent Lya-
punov functions (PDLFs).

Simulation Results

Next, the LPV controller synthesized using two sub-
sets is used for comparison study and simulation work.

To compare the LPV controller with the optimal

7-to_ controller, eight points are chosen fl'om the param-
eter set P and 7-to_ controller is synthesized for each

operating condition. Then their 7-/0, norm values are
compared with the sub-optimal control performance
that is achieved by LPV controllers evaluated at fixed

parameter values. These are provided in the Table 3.

p(rad/s)
315 9.778

427.1 7.487
539.3 6.149

651.4 5.289
763.6 4.696

875.7 4.264
987.9 3.936

1100 3.678

?-/o_ Interpolating LPV
9.833

8.147
6.719

5.772
4.988

4.831
4.600

4.383

Table 3 Frozen optimal/LPV closed-loop 7-{_
norm.

Since the LPV controller is designed for a range of

parameters, it is not surprising that they are only sub-
optimal for each fixed parameter value. However, it

is observed that the optimal performance level using
7-to_ is very close to the achievable performance de-

rived from switching the LPV controller at each frozen
parameter. However, the optimal controller is highly

tuned to its designated rotor speed. When a magnetic
bearing operates at a different rotational speed, signif-
icant performance degradation or even loss of stability

is expected. For example, the optimal 7-to_ controller
designed for p = 700r'ad/s results in a performance
level 7 = 1.16 × 106 when the rotor is actually rotat-

ing with the speed of llOOrad/s.

Finally, we compare the closed-loop step response

for both optimal and LPV controllers. The time re-
sponses for the optimal controller and the LPV con-

troller are shown in Figures 2 and Figure 3, respec-
tively. It can be seen that the step responses of rotor
displacement from both controllers are quite similar,

whereas the control actions are slightly different due
to sub-optimality of LPV controllers.

After analyzing the frozen point LPV controller
property, we are ready to do some nonlinear simula-

0'15 0!2 '025

Time (s)

xl0 3

1

_o5

1f L/15

2 I I
0 005 01

xlO 3

5

01 015 02 025

Time (s)

(a) rotor displacement Xl,.Z'2

5o°
01 02 025015 03

Time (s)

3oo
200

100

2 0

100

200
01 015 02 025 03

Time (s)

(b) control force (Ul, ?t2

Fig. 2 Fixed parameter unit-step response with
7-to_ optimal controller.

tions for AMB with time-varying rotational speed. A
time-varying rotor speed profile is chosen as

sin(680t) 0 < t < 0.5s
d(t) = sin(wt), w=655+50t 0.5s_<t< 1.5s

sin(730t) 1.5s _< t < 2s
(62)

Note that the rotor speed trajectory is deliber-
ately chosen to cross the intersection of two subsets

[315,720] and [700, 1100] of the scheduling parame-
ter to illustrate LPV controller interpolating effect.
Disturbance cl = 1.3 × 10 -_ is used for the simula-

tion purpose. Except for small glitches during the
controller interpolation period, the simulation results

demonstrate good performance of interpolating LPV

control as shown in Figure 4.

Concluding Remarks

In this paper, an LPV control interpolation algo-
rithm was proposed to achieve high-performance of

gain-scheduled control. The proposed LPV control
approach unified the systematic LPV control theory
with interpolation technique. The stability of the
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Fig. 3 Fixed parameter unit-step response with
LPV controller.

interpolated LPV control was achieved by enforcing

continuity of Lyapunov function over entire parameter

space. With modest increase of computational effort,

the proposed LPV interpolation scheme improved the

LPV control performance considerably. The newly de-

veloped LPV control synthesis method was applied to

the magnetic bearing control problem to reject un-

balancing sinusoidal disturbances and accommodate

changing rotor speed. Promising simulation results

were obtained.

For future research, an F-16 nonlinear model has

been acquired from the NASA Langley Research Cen-

ter and the proposed LPV control technique is cur-

rently being applied to a highly maneuverable aircraft

to improve its performance over the expanded flight

envelope into nonlinear unsteady flight regimes. Be-

cause aerodynamic controls mw be insufficient for

control at post-stall conditions, we would like to aug-

ment the conventional aerodynamic surface controls

using thrust vectoring (TV) control effectors. The

LPV interpolated control design approach is capable

of unifying the aerodynamic force and thrust force

control law development in a unified framework, and

750

740

7S0

720

710

700

J
69O

68O

67O

66O

02 04 06 08 Timel(s) 12 14 16 18

(a) Rotor speed profile
:1o'

3

4
02 04

¢

06 08 Tim el(s) 12 14 16 18

(b) Displacement: xs solid, x._ dash

Fig. 4 Performance of interpolating LPV control

for time-varying rotor speed.

of providing guaranteed stability and performance for

large flight envelope.
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